p-group, metabelian, nilpotent (class 3), monomial
Aliases: C42.352C23, (C4×D8)⋊22C2, C4⋊Q8⋊8C22, D8⋊C4⋊9C2, C4⋊C8⋊14C22, (C4×C8)⋊15C22, C4⋊C4.345D4, D4⋊2Q8⋊7C2, (C4×SD16)⋊5C2, (C4×D4)⋊9C22, (C4×Q8)⋊9C22, C8⋊C4⋊5C22, D4⋊Q8⋊24C2, D4.9(C4○D4), C22⋊SD16⋊6C2, C22⋊D8.4C2, C2.17(D4○D8), C4⋊C4.71C23, (C2×C8).45C23, C4.Q8⋊67C22, C2.D8⋊25C22, D4.2D4⋊20C2, (C2×C4).316C24, C22⋊C4.146D4, C4.4D4⋊7C22, C23.255(C2×D4), SD16⋊C4⋊12C2, (C2×Q8).80C23, D4⋊C4⋊80C22, C2.26(D4○SD16), Q8⋊C4⋊25C22, (C2×D4).407C23, (C2×D8).125C22, C4⋊D4.26C22, C22⋊C8.29C22, C22.11C24⋊11C2, C22⋊Q8.26C22, C23.20D4⋊19C2, C23.19D4⋊19C2, (C22×C4).289C23, C42.7C22⋊1C2, (C2×SD16).17C22, C22.576(C22×D4), C22.36C24⋊1C2, (C22×D4).361C22, C42⋊C2.127C22, C2.117(C22.19C24), C4.201(C2×C4○D4), (C2×C4).500(C2×D4), SmallGroup(128,1850)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22 — C42⋊C2 — C42.352C23 |
Generators and relations for C42.352C23
G = < a,b,c,d,e | a4=b4=c2=d2=e2=1, ab=ba, ac=ca, dad=ab2, ae=ea, cbc=ebe=b-1, bd=db, dcd=a2c, ece=bc, de=ed >
Subgroups: 436 in 203 conjugacy classes, 88 normal (84 characteristic)
C1, C2, C2, C4, C4, C22, C22, C8, C2×C4, C2×C4, D4, D4, Q8, C23, C23, C42, C42, C22⋊C4, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, D8, SD16, C22×C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, C24, C4×C8, C8⋊C4, C22⋊C8, D4⋊C4, Q8⋊C4, C4⋊C8, C4.Q8, C2.D8, C2×C22⋊C4, C42⋊C2, C4×D4, C4×D4, C4×Q8, C4⋊D4, C22⋊Q8, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42⋊2C2, C4⋊Q8, C2×D8, C2×SD16, C22×D4, C42.7C22, C4×D8, C4×SD16, SD16⋊C4, D8⋊C4, C22⋊D8, C22⋊SD16, D4.2D4, D4⋊Q8, D4⋊2Q8, C23.19D4, C23.20D4, C22.11C24, C22.36C24, C42.352C23
Quotients: C1, C2, C22, D4, C23, C2×D4, C4○D4, C24, C22×D4, C2×C4○D4, C22.19C24, D4○D8, D4○SD16, C42.352C23
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)
(1 23 25 17)(2 24 26 18)(3 21 27 19)(4 22 28 20)(5 15 32 9)(6 16 29 10)(7 13 30 11)(8 14 31 12)
(1 29)(2 30)(3 31)(4 32)(5 28)(6 25)(7 26)(8 27)(9 20)(10 17)(11 18)(12 19)(13 24)(14 21)(15 22)(16 23)
(2 26)(4 28)(5 30)(6 8)(7 32)(9 13)(10 12)(11 15)(14 16)(18 24)(20 22)(29 31)
(1 3)(2 4)(5 11)(6 12)(7 9)(8 10)(13 32)(14 29)(15 30)(16 31)(17 21)(18 22)(19 23)(20 24)(25 27)(26 28)
G:=sub<Sym(32)| (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23,25,17)(2,24,26,18)(3,21,27,19)(4,22,28,20)(5,15,32,9)(6,16,29,10)(7,13,30,11)(8,14,31,12), (1,29)(2,30)(3,31)(4,32)(5,28)(6,25)(7,26)(8,27)(9,20)(10,17)(11,18)(12,19)(13,24)(14,21)(15,22)(16,23), (2,26)(4,28)(5,30)(6,8)(7,32)(9,13)(10,12)(11,15)(14,16)(18,24)(20,22)(29,31), (1,3)(2,4)(5,11)(6,12)(7,9)(8,10)(13,32)(14,29)(15,30)(16,31)(17,21)(18,22)(19,23)(20,24)(25,27)(26,28)>;
G:=Group( (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32), (1,23,25,17)(2,24,26,18)(3,21,27,19)(4,22,28,20)(5,15,32,9)(6,16,29,10)(7,13,30,11)(8,14,31,12), (1,29)(2,30)(3,31)(4,32)(5,28)(6,25)(7,26)(8,27)(9,20)(10,17)(11,18)(12,19)(13,24)(14,21)(15,22)(16,23), (2,26)(4,28)(5,30)(6,8)(7,32)(9,13)(10,12)(11,15)(14,16)(18,24)(20,22)(29,31), (1,3)(2,4)(5,11)(6,12)(7,9)(8,10)(13,32)(14,29)(15,30)(16,31)(17,21)(18,22)(19,23)(20,24)(25,27)(26,28) );
G=PermutationGroup([[(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32)], [(1,23,25,17),(2,24,26,18),(3,21,27,19),(4,22,28,20),(5,15,32,9),(6,16,29,10),(7,13,30,11),(8,14,31,12)], [(1,29),(2,30),(3,31),(4,32),(5,28),(6,25),(7,26),(8,27),(9,20),(10,17),(11,18),(12,19),(13,24),(14,21),(15,22),(16,23)], [(2,26),(4,28),(5,30),(6,8),(7,32),(9,13),(10,12),(11,15),(14,16),(18,24),(20,22),(29,31)], [(1,3),(2,4),(5,11),(6,12),(7,9),(8,10),(13,32),(14,29),(15,30),(16,31),(17,21),(18,22),(19,23),(20,24),(25,27),(26,28)]])
32 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2H | 2I | 4A | ··· | 4F | 4G | ··· | 4M | 4N | 4O | 4P | 8A | 8B | 8C | 8D | 8E | 8F |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 4 | ··· | 4 | 4 | ··· | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 |
size | 1 | 1 | 1 | 1 | 4 | ··· | 4 | 8 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | 8 | 8 | 4 | 4 | 4 | 4 | 8 | 8 |
32 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | + | ||
image | C1 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | C2 | D4 | D4 | C4○D4 | D4○D8 | D4○SD16 |
kernel | C42.352C23 | C42.7C22 | C4×D8 | C4×SD16 | SD16⋊C4 | D8⋊C4 | C22⋊D8 | C22⋊SD16 | D4.2D4 | D4⋊Q8 | D4⋊2Q8 | C23.19D4 | C23.20D4 | C22.11C24 | C22.36C24 | C22⋊C4 | C4⋊C4 | D4 | C2 | C2 |
# reps | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 8 | 2 | 2 |
Matrix representation of C42.352C23 ►in GL6(𝔽17)
4 | 0 | 0 | 0 | 0 | 0 |
0 | 4 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 1 | 1 | 15 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 16 | 0 | 0 | 0 |
0 | 0 | 16 | 1 | 1 | 15 |
0 | 0 | 16 | 0 | 1 | 16 |
6 | 15 | 0 | 0 | 0 | 0 |
9 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 0 |
0 | 0 | 14 | 14 | 0 | 0 |
0 | 0 | 3 | 14 | 0 | 6 |
0 | 0 | 14 | 0 | 3 | 0 |
16 | 0 | 0 | 0 | 0 | 0 |
11 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 16 | 0 |
0 | 0 | 16 | 1 | 0 | 16 |
1 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 16 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 16 | 0 | 1 | 16 |
G:=sub<GL(6,GF(17))| [4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,16,1,0,0,0,0,1,0,0,0,0,1,1,0,0,0,0,0,15,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,16,16,16,0,0,1,0,1,0,0,0,0,0,1,1,0,0,0,0,15,16],[6,9,0,0,0,0,15,11,0,0,0,0,0,0,3,14,3,14,0,0,14,14,14,0,0,0,0,0,0,3,0,0,0,0,6,0],[16,11,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,16,0,0,0,1,0,1,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,16,0,0,0,16,0,0,0,0,0,0,1,1,0,0,0,0,0,16] >;
C42.352C23 in GAP, Magma, Sage, TeX
C_4^2._{352}C_2^3
% in TeX
G:=Group("C4^2.352C2^3");
// GroupNames label
G:=SmallGroup(128,1850);
// by ID
G=gap.SmallGroup(128,1850);
# by ID
G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,758,1018,80,4037,1027,124]);
// Polycyclic
G:=Group<a,b,c,d,e|a^4=b^4=c^2=d^2=e^2=1,a*b=b*a,a*c=c*a,d*a*d=a*b^2,a*e=e*a,c*b*c=e*b*e=b^-1,b*d=d*b,d*c*d=a^2*c,e*c*e=b*c,d*e=e*d>;
// generators/relations